
A path to build reliable, robust, and consistent ML models 

Introduction 

We published five blogs of a six-part series about the importance and necessity of having a 

solid MLOps implementation where we looked at the different phases of MLOps namely, 

Problem Formulation, DataOps, Modeling, and CI/CD. In this final blog post we aim to elabo-

rate on a quintessential MrealxLOps phase that is the crown of the entire process — Moni-

toring. 

We illustrate the importance of Monitoring and introduce the players involved in this part. 

We then discuss the main activities and expand on some design principles to keep in mind 

while setting up this part of the MLOps process. Finally, we look at the principles that go-

vern the monitoring to understand this phase in a broader context. 

The why and the who of monitoring 

Why did we call this phase the crown of the entire ML pipeline? Because this is where we get 

to see and analyze the outputs of our ML model. Monitoring is where the seeds of improve-

ment lie for the experimental nature of ML algorithms. But ML pipelines come with their 

own technical debts, i.e., long-term costs incurred by moving quickly in development. 
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Figure 1: High level overview MLOps — phases and the involved players with an emphasis on Monitoring.  



From the ML side, while training and deploying ML models is relatively cheap and can fol-

low fast release cycles, the maintenance is difficult and expensive. Like any other software 

pipeline, they need a health check on interacting services, cloud deployments, system per-

formance, network traffic, latency, and so on, which are not discussed in this blog. In this 

blog, we want to focus on the ML debts, i.e., model and data, and additional hidden tech-

nical debt ML has in terms of unpredictable behavior in production over time. 

 

Data-dependency is a critical aspect where the ML pipeline differs from traditional soft-

ware. The data is continuously subject to change, and business requirements also con-

stantly shift. This instability in input data can lead to model decay which is the hidden 

technical debt of ML, the risk of concept and data drift. AI models are only as good as 

their ability to simulate real-world phenomena to predict an output. As AI is increasingly 

being used in decision processes, it is unacceptable for the model to drift thereby giving 

less relevant predictions. 

 

Entanglement is another technical debt. The ML models use multiple input signals, entan-

gling them to calculate meaningful features. So, if the distribution of any input signal 

changes, its feature weights will change, which can change the weights of all other re-

maining features. This scenario is also called CACE: changing anything changes everything 

issue. Hence even some silent ‘improvements’ or small hardware ‘calibrations’ can lead to 

sudden ramifications for the model. Therefore, it is important to make sure we know what 

to monitor and how to mitigate the technical debt of ML. 

 

The key players in this phase are the data analysts, data analytics architects, and risk man-

agers. The data-analytics architect advises the right technologies to analyze and visualize 

the data from the wide range available on the modern market, from commercial to open 

source. Furthermore, the analytics architect evaluates non-functional attributes, such as 

security, utility, and stability. Thus, within MLOps, the analytics architect demands an over-

view of the models and their related data resources. Since the data can be multi-

dimensional, data analysts often manipulate and aggregate the data before performing 

fundamental analysis or monitoring. The risk manager’s task is to assess — from beginning 

to end of the MLOps process — whether the ML model carries a risk for the organization 

from a regulatory or privacy aspect.  

 

Although data analysts have the technical skills to manipulate and visualize the data, they 

often lack a deeper understanding of their business domain. For this reason, Data Scien-

tists and SMEs are needed in this phase as well who provide the team with the proper con-

text and data understanding. During the monitoring process, they closely observe wheth-

er the ML model’s outputs make sense. The SME must grasp the model evolution from a 

business perspective. Furthermore, the SME has a sharp eye to identify ML technical debts 

and adjust the team’s course where needed.  

https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf


This way, SMEs have a mechanism for providing feedback to the data scientists to improve 

the model performance. Thus, monitoring is required to observe and understand the ML 

model results and the data. It ensures consistency and robustness of the ML system and 

instills trust in the user. 

 

Activities in monitoring 

How we store the data impacts how we query it, even for analysis and monitoring. Our pre-

vious blogs from this series also illustrate fundamental principles that ensure smooth data 

handling at this last stage of the MLOps pipeline. The activities in the monitoring phase are 

described below: 

· Creating dashboards: Model analysis often involves high-dimensional visualization and 

use-case-specific data-slicing. A dashboard consists of the visualizations of all the essential 

metrics that need constant monitoring. It provides vital insights for detecting changes in 

model behavior over time, influencing business decisions and model improvements. 

· Analytics metrics: Metrics like data stability (i.e., distribution over time), model perfor-

mance, and operations metrics. These three categories encompass all the relevant parts of 

an MLOps setup; hence, appropriate thresholds are defined for a healthy ML system. 

· Creating alerts: For active monitoring, a mechanism must exist to raise the alarm when a 

failure happens. A failure occurs whenever an observation value reaches the defined 

threshold. An alert is usually an automated message sent to the task owner whenever a 

failure occurs. 

· Feedback loops: To put it simply, you place the model in production, measure all relevant 

metrics, and use them to improve the model iteratively in a cycle. Providing feedback is the 

primary motivation for monitoring — improvement over time. 

· Creating training triggers: Automatic retraining of the model. How do we trigger the re-

training? If the performance changes are quantified, and specific thresholds are applied 

based on the use case, triggers can be created to re-train and fine-tune the model hyper-

parameters using the old data as well as the new data collected since the model was put to 

production. 

· Data-logging: Logging and documentation for all software development come under 

good coding practices, which can be a lifesaver in debugging. Furthermore, it can provide 

valuable information to fine-tune ML algorithms better. Alerts can also be created by auto-

mated parsing of data log files. 

 



 

 

 

 

 

 

 

 

To implement the above steps for the efficient monitoring of ML models, some reliable enter-

prise solutions already exist: Azure, AWS, and Google Vertex AI monitoring services. These 

platforms provide active monitoring to detect feature and data skews/drifts, creating dash-

boards and alerts etc. Although these pipelines can also be set up by data-analysts using Mi-

crosoft Power BI, Neptune, or Tableau, and guidance from data scientists to include the do-

main-specific visualizations can be a bonus. 

While implementing these functional monitoring steps, it is important to recall the principles 

which govern the design principles of this phase: reliability, robustness, and consistency. 

 

Reliability principle 

Reliability focuses on assessing and governing how trustworthy and fail-safe the ML system is, 

rather than how well it performs “on paper”. Under the monitoring phase’s reliability princi-

ple, we must ensure that the models placed in production don’t produce any technical debt 

such as availability, system performance, security, data drift, latency, etc. Since the reliability 

of ML systems depends on data and code, both aspects must be thoroughly scrutinized in 

monitoring and debugging. Tracking system behavior and model performance in real-time, 

with automated alerts for any threshold violation, ensures long-term ML system reliability. 

Apart from this, we can choose to continuously monitor and validate the extracted features to 

create valuable logs for analysis and improvements. All the up-stream producers of the data 

(used for data filtering and manipulation) should be monitored after every pre-processing 

step for added reliability. 

Since the ML models can negatively impact the downstream processes, it can be wise to con-

tinuously assess the impact of the model staleness to ensure reliability. Models should be 

tweaked and retrained over time to address the changing data and business needs. This can 

lead to correction cascades resulting in improvement deadlocks. One way of achieving relia-

bility is to avoid correction cascades by doing small A/B testing with older model versions on 

current data. Older model versions are sometimes more generalized and can perform better 

on the changing data. Re-visiting ML model versions for fresh improvements can help break 

the improvement deadlock of models. Another way to ensure the reliability of the whole ML 

system is to have rollback procedure ready, especially when deployment dependencies are 

high, to deploy-back the older version of model in case of failures.  

Figure 2: An overview of DevOps activities (including monitoring) and illustrated interaction 
with other MLOps players.  

https://docs.microsoft.com/en-us/azure/machine-learning/monitor-azure-machine-learning
https://aws.amazon.com/sagemaker/model-monitor/
https://cloud.google.com/vertex-ai/docs/model-monitoring
https://powerbi.microsoft.com/en-au/power-bi-and-azure/
https://neptune.ai/home
https://www.tableau.com/data-insights
https://towardsdatascience.com/technical-debt-in-machine-learning-8b0fae938657#:~:text=Correction%20cascades%20happen%20when%20the,is%20called%20a%20correction%20cascade.


It is always nice to have a rubric handy for ensuring reliable development of ML systems in 

production environment, which is exactly what a team from Google documented and can be 

found here. 

Robustness 

This principle is tightly connected to the previous one, but it is also essential to look at the 

overall model performance over time and on unseen data. A robust ML algorithm will have a 

low testing error, i.e., low bias, even under unforeseen system changes. Following the con-

tinuous testing phase described in our previous blog ensures robustness through a test 

strategy. The test results and final tested model versions create ground truth subsets of da-

ta to validate against. The ground truth labels are then used to perform targeted analysis to 

ensure robust ML model performance. 

One way is to analyze the prediction bias. In a healthy ML system, predicted labels’ distribu-

tion is equal to observed labels’ distribution. In case of multiple input data sources, data 

entanglement leads to hidden feature dependencies across such multi-dimensional data. 

Continuous visualization across data slices, like different data sources, across different fea-

ture space, often provides valuable insights in creating robust models. Another way to in-

crease model robustness is by monitoring that the model performance is similar for all 

these data sources. Testing ML models with considerations of inclusion (in training data) 

can also positively impact the robustness of the ML system. 

Consistency 

A consistent pipeline will perform as expected over time. We need to re-train ML models be-

cause of their data-dependent nature, to minimize the risk of concept and data drift. The 

statistical distribution of data and corresponding features can change with time, and COVID 

is a perfect example, where all prediction models were affected drastically. The data shift 

may be prominently visible in the monitoring of accuracy and performance metrics of the 

model or can be hidden in the underlying shift of configuration assumptions. Thus, statisti-

cal tools like SAS is widely used to check and analyze data and detect data-drift using tech-

niques like Kolmogorov-Smirnov and chi-squared tests. 

One common way to deal with data dependencies is to create the versioned copy of input 

data over different periods and freeze the feature mappings until updated mappings are 

made available per the changing data. Versioning is, however, prone to model staleness 

and requires frequent re-trained model deployments, thus making it a costly solu-

tion. RStudio is another widely used open-source tool, which helps data scientists and ana-

lysts to work together, integrate dashboards and analyze hidden trends in the input signal. 

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://www.sas.com/nl_nl/company-information/vision-mission.html
https://medium.com/geekculture/monitoring-feature-draft-in-models-e5798b1a3c39
http://rstudio.com/products/rstudio/


Conclusion 

In this blog, we complete the ML pipeline cycle and focus on a crucial phase of MLOps — 

Monitoring. Monitoring is required to ensure the reliability, robustness, and consistency 

of ML models and to analyze the model performance and data to improve the system. In 

this blog, we saw the importance of monitoring and how people with different expertise 

again come together during this last phase to enable the operations and analytics in the 

ML pipeline. We also saw the list of essential activities involved in monitoring and the 

principles that play a vital role in designing these activities. This blog also concludes the 

six-blog series, which highlights all the critical phases in the MLOps cycle. Ultimately, eve-

ry step in the MLOps process builds the way for more trusted, transparent and perfor-

mant AI models at scale. 

 

But does the decision-making end here? We wish it were that easy! There is one more hid-

den aspect in ML systems — which differs entirely from traditional software develop-

ment. That is the different maturity levels in which an ML project can be. Although our 

next post does not directly dictate the MLOps principles as this blog series does, it focus-

es on different ML development environments in different development stages. So, stay 

tuned for some fun relatable examples to understand how MLOps infrastructure and de-

sign choices vary with different maturity levels an ML system can have! 

 

 


